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The revolutionary techniques of modern molecular and cellular biology
enhance almost daily our knowledge of immunity and autoimmunity in
men and experimental animals. Our fragmentary puzzle of the immune
system is going to form a fascinating picture of a master piece of evolution.
Although many of these aspects were achieved by analysis of human body
fluids and tissues, the etiopathogenesis of autoimmune diseases cannot
readily be analyzed without appropriate animal models as shown in
Chapter 1 and 3. Spontaneous and xenobiotic, idiotypic manipulation, and
immunization induced autoimmune animal models as well as novel autoim-
mune knock-out and knock-in mice are used to investigate (i) the role in the
pathogenesis of long-lived plasma cells, type I interferons, and mutations in
genes encoding regulators of the cell cycle, (ii) the molecular mechanisms
of xenobiotic autoimmunity, (iii) the break of tolerance via immunization
with apoptotic material, (iv) immune mechanisms of autoimmune pregnan-
cy loss as well as experimental APS, and (v) novel therapeutic approaches.
This volume further deals with natural and pathogenic autoantibodies
(Chapter 2), autoantibodies in systemic autoimmune diseases (Chapter 7),
and the autoimmunity in neurological diseases. The role of B cells, auto-
antibodies and post-translational modifications in the pathogenesis of
multiple sclerosis is discussed (Chapter 6). Some human SLE susceptibility
genes identified by linkage studies e.g. at 1q23, a novel RA susceptibility
gene encoding peptidylarginine deiminase type 4 as well as novel auto-
antibodies that target GW bodies, mitotic chromosomes, the spindle appa-
ratus, hnRNPs, laminin-1, high mobility group box 1 protein, and the survi-
val protein LEDGF/p75 are described in detail (Chapter 4,5). Furthermore,
the occurrence and measurement of therapy-induced antibodies (Chapter
8), guidelines and approaches to autoantibody testing and new technolo-
gies in autoantibody profiling, such as addressable laser bead immuno-
assays and autoantigen arrays are reviewed and discussed (Chapter 9). 
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Preface 

 
 
There is an ever growing number of autoimmune diseases ranging from 
systemic and multi-organ specific to organ-specific disorders. Worldwide, 
millions of people are suffering from autoimmune diseases. Many of those 
diseases dramatically change the life of patients and may even become 
life�threatening. Morbidity and mortality result from the involvement of 
essential organs. The usual live-long treatment of autoimmune patients are 
very expensive and the illness is often debilitating. Unfortunately, some 
patients have to suffer for years until a correct diagnosis leads to appropriate 
or effective therapy. At least in some cases, an earlier diagnosis would 
improve the outcome of therapy. 

What has been done, what has to be done, what can be done, now and in 
the future, in order to improve the diagnosis and therapy of autoimmune 
patients? For this purpose it is necessary to investigate the etiology and 
pathogenesis of the different forms of autoimmune diseases. The factors and 
the complex mechanisms that are involved in the development of pathological 
autoimmunity are incompletely understood. However, it appears to be likely 
that genetic as well as environmental factors are responsible for the induction, 
development and progression of most autoimmune diseases. Although some 
of the pathological aspects can be explored by analysis of human body fluids 
and tissues and by epidemiological studies the puzzle of the etiopathogenesis 
of autoimmune diseases cannot readily be analyzed without appropriate 
animal models. It is not astonishing therefore, that the fourth AAA volume has 
focused on animal autoimmune models for exploring the pathogenesis and 
therapy of autoimmunity in mice, the role of natural and pathogenic 
autoantibodies, the molecular mechanisms of xenobiotic-induced 
autoimmunity as well as the impact of various genes on disease development.  

Another focus is on the relevance of autoantibodies in human disease as 
well as the genetic factors in SLE and rheumatoid arthritis (RA). The 
identification of PADI4, a gene encoding peptidylarginine deiminase type 4, as 
a RA susceptibility gene may establish ties between breaking tolerance by 
post-translational protein-modifications and the induction of autoantibodies to 
the pathogenesis and potential molecular targets for therapeutic intervention. 
Many open questions remain to be solved by studies on men as well as 
animal models. 
 
The editors 
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Activation of B lymphocytes can result in their differentiation into antibody-
secreting cells, plasma blasts and plasma cells. Despite their relevance for 
the understanding of humoral immunity, little is known about these cells which 
often have been considered as short-lived end stages of B cell differentiation. 
This view has been challenged recently. Results of several groups have 
shown that a substantial fraction of plasma cells can survive and continue to 
secrete antibody for extended periods of time in the absence of any 
detectable memory B cells and antigen stimulation [1-3]. 

Antibodies secreted by autoreactive plasma cells are a common feature 
of systemic and organ-specific autoimmune diseases [4-6]. They can 
contribute to the pathogenesis of autoimmune diseases either directly, by 
classic effector mechanisms, or through extensive formation and deposition of 
immune complexes [7]. From a clinical point of view, several hints indicate 
that long-lived plasma cells may play a role in autoimmune diseases. 
Sustained autoantibody titers can be observed in the serum of patients with 
autoimmune diseases following immunosuppression [8-12]. Autoantibodies 
directed to double-stranded DNA characterizing murine and human form of 
systemic lupus erythematosus (SLE) correlate with disease activity and can 
cause severe organ manifestations such as lupus nephritis [13-15]. They can 
remain stable in severe cases refractory to aggressive cyclophosphamide 
therapy [16,17].  

We have analyzed the role of long-lived plasma cells in autoimmune-
pathology in a murine model of systemic lupus erythematosus (SLE) [18]. 
Bromodeoxyuridine (BrdU), which is incorporated into the DNA of dividing 
cells, was added to the drinking water of five-month-old NZB/W mice with anti-
dsDNA autoantibodies for a period of 12 weeks. We then used a plasma cell 
marker (CD138) in order to cytometrically distinguish between proliferating 
(short-lived) and non-proliferating (long-lived) cells in plasma cell 
compartments of the spleen (Fig. 1).  
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Fig. 1: Schematic depiction of analysis of long-lived plasma cells in 5 months 
old NZB/W mice. 
 
About 60 % of all CD138+ cells became BrdU-positive within 10 days of BrdU 
feeding. The other 40 % remained unlabeled and BrdU-negative for the entire 
12 weeks of BrdU feeding, indicating that these cells are long-lived, non-
dividing plasma cells (Fig. 2 and 3). The total number of BrdU-negative 
CD138+ plasma cells did not change during these 3 months. All long-lived 
BrdU-negative plasma cells expressed little MHC II. 
 

 
 
Fig. 2: Cytometric differentiation between BrdU-positive, short-lived plasma blasts and 
BrdU-negative, long-lived plasma cells in plasma cell compartments of the spleen of 
NZB/W mice after 10 days period of BrdU feeding. 
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Fig. 3: Kinetics of BrdU incorporation in splenic plasma cells from NZB/W mice based 
on FACS analysis. 
 
Our discovery of an unusually prominent, long-lived splenic plasma cell 
population in NZB/W mice made us wonder whether these cells are 
responsible for treatment-resistant (auto)antibody titers. In NZB/W mice 
treated experimentally with cyclophosphamide, the generation of short-lived 
plasma blasts is blocked efficiently, but long-lived plasma cells do survive (fig. 
4).  
 

 
Fig. 4: Splenic BrdU-negative, long-lived plasma cells are resistant to conventional 
immunosuppression with high doses of cyclophosphamide whereas BrdU-negative, 
short-lived plasma cells do not survive this treatment. 5 months old NZB/W mice were 
fed BrdU for 2-4 weeks and received cyclophosphamide one week before FACS 
analysis. 
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This cyclophosphamide-resistant, long-lived plasma cell population contained 
a significant fraction of anti-DNA antibody-secreting cells, as identified by 
ELISPOT (fig. 5). 
 

 
 
Fig. 5: ELISPOT analysis of IgG and IgM as well as IgG anti-DNA and IgM anti-DNA 
secreting plasma cells from the spleen of NZB/W mice shows that cyclophosphamide 
treatment reduces the number of Ig and anti-DNA secreting cells but there is a 
significant fraction of plasma cells surviving this treatment. 5 months old NZB/W mice 
were fed BrdU for 2-4 weeks and received cyclophosphamide one week before FACS 
analysis. 
 
In NZB/W mice transgenic for the DNA-specific D42 antibody heavy chain, the 
frequencies of short-lived plasmablasts and long-lived plasma cells in the 
spleen were very similar to those observed in non-transgenic NZB/W mice, 
according to our BrdU incorporation data. After 12 weeks of BrdU feeding, the 
compartment of BrdU-negative, long-lived plasma cells contained about 20 % 
of D42 transgene-bearing plasma cells. This is direct evidence that 
autoreactive cells are contained within the compartment of long-lived plasma 
cells.  

In these mice, both long-lived autoreactive plasma cells and short-lived, 
constantly de novo generated plasma blasts and plasma cells contribute to 
autoantibody levels, with a ratio of 1:3, as evidenced for dsDNA-specific 
antibody-secreting cells [18]. 

In accordance, immunosuppression of autoimmune patients by selective 
depletion of B lymphocytes, but not plasma cells, with anti-CD20 antibodies 
(Rituximab) does not lead to complete disappearance of autoantibodies 
[19-21]. The resistance of a subgroup of autoantibodies to Rituximab 
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demonstrates that these antibodies are generated by long-lived plasma cells 
which do not express CD20 [22]. Anti-CD20 treatment interrupts the 
generation of the other fraction of autoantibodies, which are secreted by 
short-lived plasma blasts. These cells can be visualized in peripheral blood 
during flares of the SLE [23-25].  

Whether autoantibody-secreting cells can become long-lived plasma cells 
may depend on the time point and mode of their generation. The mechanisms 
by which the survival and migration of plasma cells are regulated are not 
completely understood. Recent findings suggest that plasma cell longevity is 
not an intrinsic capacity, but depends on a supportive environment, i.e. 
specific survival niches, which can be found in bone marrow, inflamed tissue 
and in the autoimmune spleen [26]. It has been shown that after immunization 
of NZB/W mice, antigen-specific antibody-secreting cells migrate not only to 
the bone marrow, but in similar numbers also to the chronically inflamed 
kidneys [27]. Very recently, autoreactive plasma cells with specificity for 
glomerular antigens have been demonstrated to be markedly enriched in 
lupus kidneys compared with the spleen and peripheral blood [28]. Anti-
Ro/SSA and anti-La/SSB autoantibodies are produced and are present in 
lymphocyte infiltrates of inflamed salivary glands from patients with Sjögren’s 
syndrome [29,30]. These findings suggest a potential involvement of locally 
produced autoantibodies in organ injury.  

The fact that many more plasma cells are generated during an adaptive 
immune response than finally survive and become long-lived suggests that 
only a selected fraction of plasma cells enters the pool of long-lived plasma 
cells. Competition of plasma cells for survival niches thus presumably controls 
the establishment of humoral immunity and immunopathology [26].  

It is remarkable that the spleens of NZB/W mice provide such niches for 
about ten times more long-lived plasma cells than those of normal mice. 
Factors involved in plasma cell survival are cytokines IL-5, IL-6, TNF-α, 
BAFF/BLys, and stromal cell-derived Factor 1α (CXCL12), as well as 
signaling via CD44 and BCMA expression on plasma cells. Chemokines 
addressing the chemokine receptors CXCR3 and CXCR4 control the 
migration of plasma cells, but also their survival, like CXCL12 [31-34]. 

Since long-lived autoreactive plasma cells are responsible for the 
continuous production of pathogenic autoantibodies, methods of targeting 
them should provide potent therapeutic approaches. Autologous stem cell 
transplantation (ASCT), for example, can result in the complete 
disappearance of all autoantibodies in patients with refractory SLE. ASCT 
conditioning regimens, including immunoablation by antithymocyte globulin, 
may therefore be effective modalities for targeting the long-lived plasma cell 
compartment. 
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Type I interferons (IFN) 

The Type I IFNs (IFN-I), all of which have potent anti-viral activity, include 13 
closely related IFN-α genes, one IFN-β and one IFN-ω gene located in the 
IFN gene cluster on the short arm of human chromosome 9 [1,2]. The 
different IFN-I proteins are expressed at different levels in virally infected 
cells. The expression of most IFN-α subtypes is regulated by the transcription 
factors IFN regulatory factor (IRF) 3 and IRF-7, whereas expression of IFN-α1 
and IFN-β is regulated by IRF-3 alone [3,4]. IFN-I proteins are active as 
monomers and bind a specific receptor complex composed of two subunits, 
IFNAR1 and IFNAR2 [5]. Interactions of IFN-I with the receptor cause 
reciprocal transphosphorylation of the Jak non-receptor tyrosine kinases Tyk2 
and Jak1, leading to receptor phosphorylation and phosphorylation of Stat1 
and Stat2 (Fig. 1). IFNAR1 interacts with Tyk2 and IFNAR2 with Jak1, Stat1, 
and Stat2 [6]. Phosphorylation of Stat1/Stat2 leads to the activation of 
additional IRFs, which induce the expression of IFN regulated proteins. 

Interferon inducible genes 

Binding of IFN-I to the Type I IFNR increases the expression of a group of 
interferon stimulated genes (ISGs), which are regulated by the binding of 
Stat1 and/or other Stat proteins to a cis-acting consensus sequence 
(YAGTTTCAYTTTYCC, where Y is a pyrimidine) termed the interferon 
stimulated response element (ISRE). This sequence has been found in the 
promoter regions of all IFN-I inducible genes examined to date [7]. 
Transcriptional activation of IFN-I inducible genes is transient, and generally 
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decreases after 3-4 hours, ultimately returning to baseline. The reason for this 
pattern of expression is not clear, but cannot be explained entirely by down-
regulation of the receptor [7]. ISGs play a key role in the anti-viral response, 
signal transduction, and apoptosis. Although as many as 100 genes are 
regulated by IFN-I [7], the subset involved in anti-viral responses is of special 
interest with regard to the pathogenesis of SLE. As shown in Fig. 1, activation 
of the Type I IFN receptor induces the expression “secondary anti-viral 
response genes”, which include the 2’5’-oligoadenylate synthetase (OAS) 
family, RNAse L, dsRNA dependent protein kinase (PKR), and the GTPase 
Mx1 [8]. The expression of more than 20 of these genes is increased in 
peripheral blood mononuclear cells (PBMCs) from SLE patients [9,10]. 
Expression of these genes closely reflects the production of IFN-I and has 
been used to monitor IFN-α therapy [11]. We have used OAS, Mx1, and IRF-7 
expression as a biomarker for IFN-I production. 
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Fig. 1: MyD88 independent signalling via TLR3 and TLR4 activates Type I IFN 
production 

Mx genes 

The Mx proteins are large GTPases belonging to the dynamin family that play 
a key role in limiting orthomyxovirus (influenza) and rhabdovirus (vesicular 
stomatitis virus) infections [7,12]. In human cells, the Mx1 and Mx2 genes 
encode two proteins, MxA and MxB, respectively. Expression of the Mx 
proteins is regulated by IFN-I, but not IFN-γ. By binding to virus protein 
complexes, Mx protein can inhibit viral transcription and replication. Primers 
for SYBR green and Lux-based real-time PCR were designed for quantifying 
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Mx1 gene expression normalized to β-actin in murine and human cells (Fig. 
2A-B, Tab. 1). These primers were shown to amplify a single product (Fig. 2C) 
and there was a linear relationship (r2 = 0.971) between cycle threshold (Ct) 
and template concentration (Fig. 2D). We found that Mx1 gene expression is 
induced by IFN-I, although there was weaker induction by IFN-γ. IL-6, IL-12, 
and TNFα had no effect on Mx1 gene expression, suggesting that Mx1 is a 
suitable marker for monitoring activity of the IFN system (D.C. Nacionales et 
al., submitted). 
 
Tab. 1: Primers used to quantify the expression of IFN-I inducible genes 
 
Gene Species Forward primer Reverse primer 
Mx1 Human ACCTCGTGTTCCACCTGAAG GTGTGATGAGCTCGCGTGGTA 
Mx1 Mouse GATCCGACTTCACTTCCAGATGG CATCTCAGTGGTAGTCAACCC 
IRF7 Mouse TGCTGTTTGGAGACTGGCTAT TCCAAGCTCCCGGCTAAGT 
OAS Human ACAGCTGAAAGCCTTTTGGA AAGTTTCGCTGCAGGACTGT 
Actin* Human TCCCTGGAGAAGAGCTACGA AGCACTGTGTTGGCGTACAG 
Actin* Mouse TGGAATCCTGTGGCATCCTGAAAC TAAAACGCAGCTCAGTAACAGTCCG 
Mx1§ Human CACGAAGAGGCAGCGGGATCG CCTTGCCTCTCCACTTATCTTC 
Actin§* Human CACTGTGAAGACCTGTACGCCAACACAG CTTCTGCATCCTGTCGGCAAT 
 

*Control (housekeeping gene); § LUX primers (other primers are for SYBR green) 

Threshold is the 
point of detection

Cycle-Threshold (Ct) cycle 
at which sample crosses 
threshold

Cycle-Threshold (Ct) 
cycle at which sample 
crosses threshold

ββββ-actin Mx-1A B

C D

 
Fig. 2: Quantification of human Mx1 gene expression by real-time PCR A, 
Amplification curves for β-actin using mRNA from PBMCs of four patients. Note that 
the expression of actin is comparable in all four samples. B, Amplification curves for 
Mx1 for the same four patients as shown in panel A. Note that the cycle thresholds (Ct) 
are much more variable than in the case of actin. C, Melting curve for Mx1 indicating 
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that the primers amplify a single product. D, Standard curve for Mx1 showing a linear 
relationship between Ct and template concentration. 
 

Interferon regulatory factor-7 

As discussed above, IRF-7 is a transcription factor involved in regulating the 
expression of a subset of IFN-I genes that is itself IFN-regulated. PCR primers 
for murine IRF-7 (Tab. 1) gave results that were highly correlated with the 
expression of Mx-1, suggesting that the transcription of many if not most IFN 
regulated genes reflects IFN-I production (D.C. Nacionales et al., submitted). 
IRF-7 was not usable in humans, however, due to a genetic polymorphism 
and alternative splicing [13]. IRF-7 expression could be measured in PBMCs 
from a subset of healthy individuals and SLE patients, but the product could 
not be amplified in other individuals due to the polymorphism and the lack of 
other suitable primer sequences (H. Zhuang, unpublished data). Therefore, 
OAS gene expression was substituted for IRF-7 as a confirmatory human 
IFN-regulated gene.  

2’5’-oligoadenylate synthetase 

There are three forms of OAS, OAS1, OAS2 and OAS3, generated by 
differential splicing [14]. The expression of OAS is tightly regulated by IFN-I 
[15]. OAS catalyzes the synthesis of oligoadenylates of the structure 
ppp(A2’p)n (2-5A). Binding of 2-5A oligoadenylates to a latent 
endoribonuclease, RNAse L, causes dimerization of inactive RNase L 
monomers into active dimers, resulting in the degradation of both viral and 
cellular RNAs and cleavage of ssRNA [16]. Primers were designed to quantify 
human OAS gene expression by real-time PCR (Tab. 1). As in the murine 
system, OAS gene expression correlated highly with Mx1 expression (H. 
Zhuang et al., submitted). Importantly, both Mx1 and OAS gene expression 
increased several thousand-fold during viral upper respiratory infections, 
indicating that the expression of IFN-inducible genes in PBMCs can be used 
as a measure of IFN-I production at remote sites (H. Zhuang et al., 
submitted). 

Cells producing Type I IFN 

Although most, if not all, nucleated cells are capable of producing IFN-I, the 
existence of a minor population of cells in the peripheral blood that produces 
large amounts of IFN-I was recognized about 20 years ago [17]. These 
“interferon producing cells” (IPCs) have only recently been characterized [18-
20]. The prototypical IPC is called a “plasmacytoid dendritic cell” (PDC) in 
view of its eccentrically located nucleus and prominent rough endoplasmic 
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reticulum (Tab. 2). In response to viral infection or oligonucleotides containing 
unmethylated CpG motifs, PDCs produce ~1000-fold more IFN-I than most 
other cell types [20]. However, it recently has become clear that myeloid 
dendritic cells (MDCs) also can produce large amounts of IFN-I in response to 
certain types of viral infections [20]. MDCs produce IFN-I following 
electroporation or lipofection of the double-stranded (ds) RNA analog poly 
(I:C) in amounts comparable to that of PDCs stimulated with CpG DNA. Thus, 
unlike PDCs, which are activated following endosomal uptake of bacterial 
DNA or ssRNA in a chloroquine-dependent manner, MDCs are activated 
following cytoplasmic (non-endosomal) recognition of dsRNA mediated by the 
cytosolic enzyme protein kinase R (PKR) (see below).  
 
Tab. 2: Human plasmacytoid vs. myeloid dendritic cells* 
 
 Plasmacytoid DCs Myeloid DCs 
Relative abundance in 
peripheral blood 0.01-0.05 % 0.01-0.05 % 

Appearance Prominent rough 
endoplasmic reticulum Numerous dendrites 

Surface markers Lin-, DR+, CD123+, 
CD11c-, BDCA-4+ Lin-, DR+, CD123-, C11c+ 

Toll-like receptors 
expressed TLR7, TLR9 TLR3, TLR4, TLR8 

 
* see references [18,19,41-43] 
 
PDCs and MDCs express distinctive surface markers, but they differ in 
humans and mice. Human PDCs are lineage-, HLA-DR+, CD123+, CD11c- 
whereas human MDCs are lineage-, HLA-DR+, CD123-, CD11c+ cells. In the 
mouse, both PDCs and MDCs are CD11c+. Murine PDCs are defined as 
lineage-, HLA-DR+, CD11c+, Gr-1+, B220+, CD11b-. In contrast, murine 
MDCs are lineage-, HLA-DR+, CD11c+, Gr-1-, B220-, CD11b+ (21-23). 

Innate immunity and the regulation of IFN-I production 

DCs bear surface proteins critical for their activation and maturation that 
recognize microbial “patterns”. These receptors of the innate immune system 
recognize microbe-specific molecules, such as the lipopolysaccharide (LPS) 
of gram-negative organisms, peptidoglycans, flagellin, and microbial nucleic 
acids [24]. The best known are cell surface proteins homologous to the 
Drosophila Toll protein. The 10 known mammalian Toll-like receptors (TLRs) 
each consist of an extracellular domain with leucine-rich repeats, a C-terminal 
flanking region, a membrane-spanning domain, and a cytoplasmic Toll/IL-1 
receptor homology domain or TIR, which mediates signalling following 
engagement of the appropriate ligand [24]. The TIR domain interacts with one 
or more adapter proteins, including MyD88, TIRAP/Mal [25,26], TRAM, and 
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TICAM-1/TRIF [27,28] (Fig. 1, Tab. 3). The adapter protein MyD88 is a key 
element of the signalling pathway for many of the TLRs [24,29].  
 
Tab. 3: Human Toll-like receptors that stimulate Type I interferon production 
 
TLR Known ligands Signaling pathway References 

3 dsRNA TRIF/IRF3 [115] 
4 Lipopolysaccharide TRIF/IRF3 [116-118] 
7 Imiquimod MyD88/NFκB [37,38] 
8 Imiquimod, GU-rich ssRNA MyD88/NFκB [37,38] 
9 Unmethylated CpG DNA MyD88/NFκB [44] 

TLR regulation of TNFα, IL-1 and IL-6 

Signal transduction through MyD88 recruits the IL-1 receptor associated 
kinase (IRAK-4), activating NFκB and MAP kinase. These factors lead to the 
activation of TNFα, IL-1, and IL-6 gene expression. MyD88 deficient mice are 
unresponsive to bacterial DNA containing unmethylated CpG motifs (TLR9 
ligand), are resistant to LPS-induced shock (TLR4), and are grossly deficient 
in TNFα, IL-1, and IL-6 production, despite the fact that NFκB and MAP 
kinase activation is not abolished [30]. 

TLR regulation of IFN-I 

Although most TLRs depend on MyD88 for signaling, TLR3 and TLR4 are 
unique in their ability to signal via both MyD88-dependent and MyD88-
independent pathways [28,30-32] (Fig. 1). MyD88-independent signalling is 
dependent on the adapter protein TICAM-1/TRIF [27,28], which activates the 
transcription factor IRF-3 [33], leading to IFN-β production [28,32,34). The 
IFN-β enhancer sequence contains four positive regulatory domains: PDR I-IV 
[35]. IRF3 binds to PDR III and PDR I, NFκB to PDR II, and ATF-2/c-Jun to 
PDR IV. Together, IRF-3 and NFκB activate several “primary viral response 
genes” in addition to IFN-β, including IFN-α1, IP-10, and RANTES [4,8] (Fig. 
1). IRF7, on the other hand, is required to activate the enhancers of other 
members of the IFN-I family [4] and to promote positive feedback regulation of 
IFN production [36]. 
In addition to TLR3 and TLR4 ligands, TLR9 ligands stimulate IFN-I 
production [Tab. 3]. However, TLR9-induced IFN production is not dependent 
on TICAM-1/TRIF. It was reported recently that certain single-stranded RNAs 
rich in GU or U sequences also stimulate IFN-I production through 
interactions with TLR7 and/or TLR8 [Tab. 3]. Imidazoquinolones, such as 
imiquimod, also engage these receptors, stimulating IFN-I production [37,38]. 
The pathway(s) involved in this response have not yet been fully elucidated. 
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Cross-talk between PKR and TLR3 

The extracellular TLR3 molecule recognizes viral double stranded (ds) RNA 
and activates intracellular kinases including the dsRNA-dependent protein 
kinase (PKR), culminating in IFN expression [39]. PKR plays a critical role in 
innate immunity to viruses by recognizing intracellular (cytoplasmic) dsRNA 
intermediates produced during viral infection. IFN-inducible antiviral activity 
against the infections limited by Mx1 (influenza and VSV, see above) also is 
highly dependent on PKR, whereas PKR appears dispensable for protection 
against other viruses, such as vaccinia or picornaviruses [40]. Human PKR is 
a 68 kDa protein with a C-terminal kinase domain and an N-terminal dsRNA 
binding proteins. Its best-studied activity involves shutdown of protein 
synthesis through complex interactions with dsRNA and translation initiation 
factor-2a (eIF-2α), leading to decreased expression of viral messages (40). 
PKR initiates the activation of transcription factors NF-κB, ATF-2, STAT1, and 
IRF-1, as well as the p38 and JNK MAP kinases. It also interacts with 
Mal/TIRAP in TLR4 signalling (Fig. 1), but is not required for LPS-induced 
IFN-β production. Although PKR does not appear to bind directly to TLR3, 
recent studies indicate that upon binding of dsRNA to TLR3, TRAF6, TAK1, 
TAB2, and PKR are recruited to the receptor complex leading to NF-κB 
activation (Fig. 3). Thus, there is likely to be significant cross-talk between the 
TLR3 and PKR pathways. The precise role of PKR in these pathways remains 
incompletely understood and it is not known how the interaction of PKR with 
dsRNA activates IFN-I expression.  

TRAF6

TAB1

TAK1

TAB2

TRIF

TLR3
dsRNA

TAB1

TAK1

TAB2

PKR

TAK1

IKKαααα

IKKββββ

IKKγγγγ

NFkB

PKR dsRNA

?

 
 
Fig. 3: Role of protein kinase R (PKR) in NFκB activation and Type I IFN production 
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Expression of Toll-like receptors by DC subsets  

The major IFN-producing cells express different subsets of surface receptors 
mediating innate immunity. Specifically, PDCs express TLR7 and TLR9, 
whereas MDCs express TLR3, TLR4, and TLR8 [41-43]. Thus, PDCs are 
stimulated preferentially by viral GU-rich single-stranded RNA and 
unmethylated CpG DNA [37,38,44], whereas MDCs are stimulated 
preferentially by dsRNA and LPS [8,45]. In view of the correlation between 
TLR expression and responsiveness of different types of DCs to microbial 
stimuli, the differential expression of TLRs is likely to play a significant role in 
the regulation of IFN-I production by DCs [46-49]. There is some evidence 
that signalling from Toll-like receptors can vary depending on the cell type or 
maturation state. Of particular importance is the fact that macrophages 
express TLR3, and when stimulated with extracellular dsRNA produce IFN-I 
[50]. In contrast, extracellular dsRNA is incapable of stimulating IFN-I 
production by MDCs, which nevertheless produce high levels of IFN-I when 
dsRNA delivered intracellularly activates the PKR pathway [20]. 

Activated PDCs and MDCs home to secondary lymphoid 
organs 

Immature DCs in the periphery sample antigen but are poor at antigen 
presentation due to their low expression of MHC and co-stimulatory molecules 
[51,52]. Immature DCs express receptors for inflammatory chemokines, 
allowing them to migrate to sites of inflammation where they capture antigens 
and undergo maturation. Immature DCs respond to the inflammatory 
chemokines MIP-1α, MIP-1β, MIP-3α, MIP-5, MCP-3, MCP-4, RANTES, 
TECK and SDF-1. Various subsets of immature DCs exhibit different 
chemokine responsiveness. Langerhans cells express CCR6 and migrate 
selectively to MIP-3α, human blood CD11c+ DC express CCR2 and migrate 
to MCP chemokines, and monocyte-derived DC express CCR1 and CCR5 
and migrate to MIP-1α/β. Immature PDCs express CXCR4, the receptor for 
SDF-1, as well as lower levels of CCR2, CCR5, CCR6, and CXCR3 [53]. 
Thus, immature PDCs migrate to SDF-1 as well as to the IFN-γ-inducible 
chemokines IP-10, MIG, and ITAC [54]. 

DC maturation induced by TLR ligands or CD40L causes down-regulation 
of receptors for inflammatory chemokines and a concomitant up-regulation of 
receptors for chemokines expressed in the secondary lymphoid organs, 
especially SLC (CCL21), ELC (CCL19), and BLC (CXCL13) [55,56]. Both 
MDCs and PDCs up-regulate CCR7 (the receptor for SLC and ELC) upon 
receiving appropriate maturation signals [43]. This mediates homing to the T 
cell zones of secondary lymphoid tissues [55]. In contrast, the maturation of 
Langerhans cells leads to upregulation of CXCR5, the receptor for BLC, which 
may promote their selective migration to the B cell zones [56].  
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In the lymph nodes, IPCs are located in close proximity to the high 
endothelial venules (HEVs) and express of CD62L (L-selectin), which is 
involved in adhesion to HEVs [19]. In CD62L knockout mice, the numbers of 
IPCs in the paracortical areas and outer T cell zone of lymph nodes are 
greatly reduced. IPCs are unusual in the lymph nodes of healthy individuals, 
but PDCs are increased in inflammatory diseases such as tuberculosis, 
granulomatous lymphadenitis, Castleman’s disease, and Kikuchi’s disease 
[19,57-59].  

IFN-I mediates the adjuvant effect 

It has been long recognized that many protein antigens are poorly 
immunogenic by themselves in comparison with intact viruses or bacteria. For 
that reason, adjuvants are added to most subunit vaccines to take the place of 
immunostimulators present in the intact organism and to enhance antigen 
presentation by DCs. Immunological adjuvants are defined as “substances 
used in combination with a specific antigen that produce more immunity than 
the antigen alone” [60]. Effective adjuvants include TLR ligands, such as poly 
(I:C) (TLR3 ligand), LPS (TLR4 ligand), and CpG oligodeoxyribonucleotides 
(TLR9 ligand), as well as mineral salts (e.g. alum) and oil emulsions, such as 
incomplete Freund’s adjuvant (the mineral oil Bayol F plus an emulsifier), 
complete Freund’s adjuvant (incomplete Freund’s adjuvant plus heat-killed 
mycobacteria), and MF59 (squalene). Importantly, the efficacy of complete 
Freund’s adjuvant requires activity of IFN-I [61]. Moreover, IFN-I has adjuvant 
activity by itself, greatly augmenting antigen-specific immunoglobulin 
production and isotype switching when administered along with soluble 
antigen. IFN-I also is required for memory B cell responses. The adjuvant 
activity of IFN-I results from enhancement of DC maturation [61].  

Experimental lupus in mice is associated with increased 
IFN-I production 

Ten years ago, we reported that the intraperitoneal injection of pristane 
(2,6,10,14-tetramethylpentadecane, 0.5 ml i.p.) in BALB/c and other non-
autoimmune strains of mice results in the production of autoantibodies 
characteristic of SLE as well as immune complex-mediated glomerulonephritis 
resembling lupus nephritis [62,63]. Some strains develop arthritis, as well [64]. 
More recently, it has become apparent that other adjuvant oils, including 
incomplete Freund’s adjuvant and squalene (MF59 adjuvant) also can induce 
lupus-like disease. Following intraperitoneal injection of these adjuvant 
hydrocarbon oils, BALB/c and most other immunocompetent mice develop 
high levels of anti-Sm, anti-nRNP, anti-dsDNA, anti-ribosomal P, anti-
chromatin, and anti-Su autoantibodies [65-67]. Some mice produce 
autoantibodies against dsRNA binding proteins such as NF90/NF45 and RNA 
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helicase A [68,69] as well as myositis-specific anti-OJ autoantibodies [70]. 
The adjuvant oil induced autoimmune syndrome is dependent on IL-6, IFN-γ, 
and IL-12, but not IL-4 [65,71,72] and pristane-treated mice produce large 
amounts of IL-6, IL-12, and TNFα in the peritoneal cavity [73]. Because the 
adjuvant activity of these oils is strictly dependent on intact IFN-I signaling 
[61], we investigated the inflammatory responses to pristane and control 
hydrocarbon oils that do not induce lupus. Intraperitoneal injection of pristane 
and other hydrocarbon oils causes a peritoneal inflammatory response 
followed by engulfment of the oil by phagocytic cells and the organization of 
polyp-like structures that have been termed “lipogranulomas” [74]. We noticed 
that these structures also develop in response to medicinal mineral oils, which 
unlike pristane do not induce lupus [73].  

Pristane-induced lipogranulomas are tertiary lymphoid tissue.  

We recently have found that pristane lipogranulomas are organized and 
function like lymphoid tissues (D. Nacionales, et al. manuscript in 
preparation). Immunohistochemistry revealed that the granulomas contain 
aggregates of B220+ B lymphocytes and CD4+ T cells as well as numerous 
CD11c+ DCs (Tab. 4). Moreover, some pristane lipogranulomas (but not 
lipogranulomas induced by medicinal mineral oil) were organized into distinct 
T and B cell zones. DCs were found in the T cell zones. Cells expressing 
chemokines characteristic of secondary lymphoid tissues (BLC, SLC, and 
ELC) and their respective receptors (CXCR5 and CCR7, respectively) were 
present in the lipogranulomas. In lymph nodes, SLC is made predominantly 
by high endothelial venules (HEVs) and stromal cells [75,76]. Thus, it was not 
surprising to find that the lipogranulomas were vascularized by blood vessels 
staining positively for peripheral lymph node addressin (PNAd), an HEV 
marker. BLC is made by follicular dendritic cells (FDCs) in the B cell follicles 
[77-79]. However, we have so far been unable to detect cells staining with an 
antibody against FDCs (FDC-M1) (D. Nacionales, unpublished data). These 
observations raise the possibility that BLC is produced by an alternative (non-
FDC) cell type in the lipogranulomas. Studies are ongoing to identify the 
source of the BLC. 

Germinal center-like reaction in lipogranulomas induced by pristane 

Following immunization with a T cell-dependent antigen, antigen-specific B 
cells home to the T cell zones of secondary lymphoid tissues such as the 
lymph nodes and spleen where they form foci in the periarteriolar lymphoid 
sheath (PALS) and develop into plasmablasts. They migrate toward the 
lymphoid chemokines SLC (expressed by HEV) and BLC (expressed by FDC) 
[55]. The SLC ligand CCR7 retains B cells within the PALS, whereas 
expression of the BLC ligand CXCR5 permits a minority of these cells to 
migrate to the B cell follicles where they become organized into germinal 
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centers, consisting of a dark zone containing proliferating (Ki67+) centroblasts 
and a light zone containing non-proliferating (Ki67-) centrocytes. Centrocytes 
are selected for survival on the basis of their affinity for antigen and 
subsequently undergo further maturation into either plasma cells or memory 
cells [80]. Germinal centers are the sites of somatic hypermutation of the 
immunoglobulin variable regions, affinity maturation, and class switching [81]. 
FDCs capture immune complexes via Fc receptors and are thought to present 
antigens to the centrocytes, preventing their deletion by apoptosis. Small 
numbers of T cells bearing CD40 ligand found in the B cell follicles also 
appear to play a critical role in the survival of antigen-selected centrocytes. 
Individual germinal centers contain oligoclonal populations (1-3 clones) of 
antigen-selected B cells [82]. Germinal center B cells uniquely stain with the 
lectin peanut agglutinin (PNA) and with monoclonal antibody GL7 [83,84] and 
also express Bcl-6 [85,86]. Germinal center B cells also express antigen 
induced cytidine deaminase (AID), an enzyme essential for somatic 
hypermutation [87], and can re-express the recombination activating genes 
RAG-1 and RAG-2 [88]. Key aspects of the germinal center reaction are 
summarized in Tab. 4. Germinal centers have a lifespan of about 3 weeks, 
after which the antigen-specific B cells undergo apoptosis and the germinal 
centers atrophy [89,90]. 
 
Tab. 4: Similarities between pristane lipogranulomas and secondary lymphoid tissues 
 
Features characteristic of secondary lymphoid tissues Lipogranulomas 
Distinct T and B cell zones Present 
Oligoclonal B cells in individual germinal centers Present 
High endothelial venules (MECA-79+) Present 
Interdigitating (CD11c+) DCs (T cell zone) Present 
Follicular DCs (FDC-M1+) (B cell zone) Absent 
Expression of BLC, SLC, and ELC Present 
B cells  
• Peanut agglutinin staining Absent 
• GL7 staining N/A 
• Ki67 staining N/A 
• Activation induced cytidine deaminase (AID) expression Present 
• Bcl-6 expression Present 
• Immunoglobulin: somatic mutation Present 
• Immunoglobulin: clonal expansion Present 
 
As discussed above, the organization, cellular composition, and chemokine 
expression pattern of pristane lipogranulomas is highly reminiscent of the 
germinal center reaction (Tab. 4). Individual pristane granulomas contain 
oligoclonal collections of B cells, some with extensive immunoglobulin 
variable region mutations and others with a germline configuration. In general, 
the latter have characteristics of B1 cells (distal VH and D segments with a 
proximal JH), whereas the mutated clones are generally more typical of 
conventional B cells (proximal VH and D segments with a distal JH) (J. 
Weinstein et al., unpublished data). Pristane lipogranulomas express the 
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germinal center B cell markers AID and Bcl-6, but so far we have been unable 
to detect peanut agglutinin or GL7 staining. It should be noted that FDCs have 
not been detected so far in pristane-induced lipogranulomas. However, it has 
been shown previously FDCs are not required for immunoglobulin somatic 
hypermutation or affinity maturation [91], two key features of the germinal 
center reaction. Thus, pristane-induced lipogranulomas have many similarities 
to individual germinal centers, but are not identical. We conclude that B cells 
in these structures are undergoing a germinal center-like reaction analogous 
to what has been seen in other instances of “lymphoid neogenesis”, defined 
as the ectopic formation of lymphoid tissue [92]. Interestingly, ectopic 
lymphoid tissue in a variety of other situations is associated with humoral 
autoimmunity [93]. Lymphoid neogenesis is seen in the thyroid gland in 
Hashimoto’s thyroiditis, the thymus in myasthenia gravis, the nervous system 
in multiple sclerosis, the salivary glands in Sjogren’s syndrome, and the 
synovium in rheumatoid arthritis [94-97]. Ectopic lymphoid tissue may allow 
immunoglobulin somatic mutation to generate autoreactivity [98] in a milieu 
deficient in the usual censoring mechanisms that remove the self-reactive B 
cells arising in germinal centers. 

IFN-I is produced at high levels in pristane lipogranulomas 

Following immunization with exogenous antigens in adjuvant, IFN-I is 
produced in the draining lymph nodes [19]. This also is the case in the ectopic 
lymphoid tissue arising in response to pristane (D.C. Nacionales et al., 
submitted). IFN-inducible gene expression (e.g. Mx1, IRF-7, IP-10) is 
significantly higher in pristane vs. medicinal mineral oil induced 
lipogranulomas. The same pattern is seen in peritoneal cells from pristane vs. 
mineral oil treated mice. Additionally, peritoneal cells from pristane-treated 
mice expressed more Mx1 after stimulation with LPS or poly (I:C) than 
peritoneal cells from mineral oil-treated mice. Thus, pristane causes 
hyperresponsiveness to stimulation with TLR3 and TLR4 ligands that may 
contribute to the increased constitutive expression of IFN-I. 

IFN-I in human autoimmune disease 

There has been recent interest in the possibility that IFN-I might play a role in 
the pathogenesis of autoimmune diseases such as lupus. IFN-α treatment in 
hepatitis C infection, malignant carcinoid syndrome, and chronic myelogenous 
leukemia is sometimes associated with autoimmune phenomena, including 
sarcoidosis [99], autoimmune thyroiditis, and autoimmune hepatitis [100]. The 
induction of antinuclear antibodies and anti-dsDNA antibodies has been 
reported and there are case reports of SLE [101-103]. The serum level of 
IFN-α has been reported to correlate with anti-dsDNA antibody levels and 
disease activity in SLE [104-106] and increased IFN-I expression is seen in 
lupus skin lesions [107]. Moreover, as discussed above, recent studies point 
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to an IFN-I gene expression “signature” associated with SLE [9,10]. In view of 
these observations and our own observations in experimental murine lupus, 
we examined the regulation of IFN-I in SLE patients. 

Regulation of IFN-I production in SLE patients 

As in the peritoneal exudate and lipogranulomas from pristane-treated mice, 
we used the expression of Mx1 and other IFN-inducible genes to demonstrate 
increased expression of IFN-I by PBMCs from SLE patients vs. patients with 
other systemic autoimmune diseases or normal controls (H. Zhuang et al., 
submitted). There was an association between increased IFN-I levels and the 
production of autoantibodies against the U small ribonucleoproteins (snRNPs) 
(anti-Sm and anti-RNP antibodies), the Y1-4 ribonucleoproteins (anti-Ro60 
antibodies), and double-stranded DNA. Strikingly, there was a strong inverse 
association between the production of anti-phospholipid autoantibodies and 
high levels of IFN-I, suggesting that the latter are regulated differently than 
autoantibodies to ribonucleoprotein and deoxyribonucleoprotein autoantigens. 
Interestingly, by flow cytometry the numbers of both PDCs and MDCs were 
reduced in SLE patients in comparison with healthy controls, despite the high 
systemic levels of IFN-I (H. Zhuang et al., submitted). In contrast to peritoneal 
cells from pristane-treated mice, PBMCs from SLE patients are hypo-
responsive to TLR3 and TLR4 ligands. We hypothesize that the cells 
producing IFN-I, which in SLE may include TLR3+/TLR4+ MDCs, may migrate 
to sites of inflammation where they continue to produce IFN-I, activating the 
expression of Mx1 and other IFN-inducible genes in circulating PBMCs. This 
may leave the peripheral blood relatively deficient in IPCs. Notably, there is a 
very similar picture (low PDC and MDC numbers) in HIV infected patients 
[108]. Conversely, inflammatory sites (e.g. the peritoneal cavity of pristane-
treated mice) and/or secondary lymphoid organs may be enriched in these 
cells. We speculate that this (and the inability of mature PDCs and MDCs to 
re-circulate once they have homed to the secondary lymphoid organs may 
contribute to the increased susceptibility of lupus patients to bacterial and viral 
infections [109,110] as well as to their poor humoral responses to vaccines 
[111,112]. Indeed, the production of polyclonal IgG antibodies to influenza 
virus is abrogated when PDCs are depleted [113] and IFN-I is known to 
influence the balance of immunoglobulin isotypes produced in response to 
polyclonal [114] or antigen-specific [61] immune stimulation.  

Conclusion 

There is considerable interest in the potential role of IFN-I in SLE. Exogenous 
administration of IFN-α can induce autoimmune diseases, including lupus, 
suggesting that there may be a cause and effect relationship. We have found 
increased expression of IFN-I inducible genes in both SLE patients and in an 
experimental model of lupus in mice. In both cases, there was dysregulation 
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of responses to TLR3 and TLR4 ligands, consistent with abnormalities in 
either the function or distribution of MDCs. Flow cytometry revealed a 
depletion of MDCs as well as PDCs in the peripheral blood of SLE patients. 
The peritoneal cavity of pristane-treated mice, in contrast, contained large 
numbers of MDCs. Finally, there was a strong association between increased 
IFN-I production and the production of certain autoantibodies characteristic of 
SLE, including anti-nRNP/Sm, anti-Ro60, and anti-dsDNA. We are 
investigating the possibility that the association of cellular TLR3 or TLR9 
ligands with these self-antigens may promote the maturation of DCs 
presenting them by stimulating IFN-I production. 
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